Search results for " FORCE-FIELD"

showing 4 items of 4 documents

Targeting of the Leishmania Mexicana cysteine protease CPB2.8 ΔCTE by decorated fused benzo[b] thiophene scaffold.

2016

A potent and highly selective anhydride-based inhibitor of Leishmania mexicana cysteine protease CPB2.8ΔCTE (IC50 = 3.7 μM) was identified. The details of the interaction of the ligand with the enzyme active site were investigated by NMR biomimetic experiments and docking studies. Results of inhibition assays, NMR and theoretical studies indicate that the ligand acts initially as a non-covalent inhibitor and later as an irreversible covalent inhibitor by chemoselective attack of CYS 25 thiolate to an anhydride carbonyl.

0301 basic medicinebiology010405 organic chemistryChemistryStereochemistryGeneral Chemical EngineeringActive siteGeneral ChemistryHighly selectivebiology.organism_classification01 natural sciencesCysteine proteaseLeishmania mexicana0104 chemical sciences03 medical and health scienceschemistry.chemical_compound030104 developmental biologyCovalent bondDocking (molecular)biology.proteinThiopheneDRUG DISCOVERY SOFTWARE NEWS FORCE-FIELD CATHEPSIN-L INHIBITORS OPTIMIZATION TRYPANOSOMIASIS IDENTIFICATION PROTEINASES VALIDATIONIC50
researchProduct

Three-dimensional solvation structure of ethanol on carbonate minerals

2020

Calcite and magnesite are important mineral constituents of the earth’s crust. In aqueous environments, these carbonates typically expose their most stable cleavage plane, the (10.4) surface. It is known that these surfaces interact with a large variety of organic molecules, which can result in surface restructuring. This process is decisive for the formation of biominerals. With the development of 3D atomic force microscopy (AFM) it is now possible to image solid–liquid interfaces with unprecedented molecular resolution. However, the majority of 3D AFM studies have been focused on the arrangement of water at carbonate surfaces. Here, we present an analysis of the assembly of ethanol – an o…

DYNAMICSMaterials scienceADSORPTIONSURFACECarbonate mineralsIonic bondingGeneral Physics and Astronomy02 engineering and technologylcsh:Chemical technology010402 general chemistrylcsh:Technology01 natural sciencesFull Research Paper3D AFMGENERAL FORCE-FIELDMolecular dynamicschemistry.chemical_compoundCALCITEMoleculeNanotechnologyWATERlcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:ScienceCalcitelcsh:THYDRATIONSolvationMD simulation021001 nanoscience & nanotechnologymagnesite540lcsh:QC1-9990104 chemical sciencesNanosciencechemistryChemical physicsCONJUGATE GRADIENTSCarbonatelcsh:Qethanol0210 nano-technologycalcitelcsh:Physicssolvation structureMagnesite
researchProduct

Molecular equilibrium structures from experimental rotational constants and calculated vibration–rotation interaction constants

2002

A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a dir…

FREQUENCIESChemistryGAUSSIAN-BASIS SETSAb initioGeneral Physics and AstronomyDiatomic moleculeSTATEBORONBond lengthVibrationHOFMETHANEMolecular geometryCCSD(T) 2ND DERIVATIVESAb initio quantum chemistry methodsACIDWAVE-FUNCTIONSPhysics::Atomic and Molecular ClustersMoleculeQUARTIC FORCE-FIELDPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsRotation (mathematics)The Journal of Chemical Physics
researchProduct

Direct experimental observation of mesoscopic fluorous domains in fluorinated room temperature ionic liquids

2017

Fluorinated room temperature ionic liquids (FRTILs) represent a class of solvent media that are attracting great attention due to their IL-specific properties as well as features stemming from their fluorous nature. Medium-to-long fluorous tails constitute a well-defined apolar moiety in the otherwise polar environment. Similarly to the case of alkyl tails, such chains are expected to result in the formation of self-assembled fluorous domains. So far, however, no direct experimental observation has been made of the existence of such structural heterogeneities on the nm scale. We report here the first experimental evidence of the existence of mesoscopic spatial segregation of fluorinated dom…

General Physics and AstronomyNanotechnology02 engineering and technologyNeutron scattering010402 general chemistryLAYER CAPACITOR APPLICATIONS; PERFLUOROALKYL SIDE-CHAINS; ANGLE NEUTRON-SCATTERING; PARTICLE MESH EWALD; PHYSICOCHEMICAL PROPERTIES; FORCE-FIELD; CATION SYMMETRY; STRUCTURAL-CHARACTERIZATION; AMMONIUM TETRAFLUOROBORATE; MOLECULAR SIMULATION01 natural sciencesionic liquidsionic liquids SANS nanostructuration fluorous domains NMR NOEchemistry.chemical_compoundMolecular dynamicsPhysics and Astronomy (all)nanostructurationMoietyPhysical and Theoretical ChemistryAlkylNOEchemistry.chemical_classificationfluorous domainsMesoscopic physicsSANSNuclear magnetic resonance spectroscopy021001 nanoscience & nanotechnologyNMR0104 chemical sciencesfluorinated ionic liquids neutron scattering x-ray diffraction structurechemistryChemical physicsIonic liquidPolar0210 nano-technology
researchProduct